
J.  Fluid Mech. (1994), val. 279, pp .  351-375 
Copyright 0 1994 Cambridge University Press 

351 

A numerical study of three-dimensional vortex 
ring instabilities: viscous corrections and early 

nonlinear stage 

By KARIM SHARIFF’, ROBERTO VERZICC02 
AND PAOLO ORLAND12 

NASA-Ames Research Center, Moffett Field, CA 94035, USA 
‘Universita di Roma “La Sapienza” Dipartimento di Meccanica e Aeronautica, 

via Eudossiana no 18, 00184 Roma, Italy 

(Received 20 September 1993 and in revised form 31 May 1994) 

Finite-difference calculations with random and single-mode perturbations are used 
to study the three-dimensional instability of vortex rings. The basis of current under- 
standing of the subject consists of a heuristic inviscid model (Widnall, Bliss & Tsai 
1974) and a rigorous theory which predicts growth rates for thin-core uniform vor- 
ticity rings (Widnall & Tsai 1977). At sufficiently high Reynolds numbers the results 
correspond qualitatively to those predicted by the heuristic model : multiple bands of 
wavenumbers are amplified, each band having a distinct radial structure. However, a 
viscous correction factor to the peak inviscid growth rate is found. It is well described 
by the first term, 1 - aI(P)/Res,  for a large range of Res. Here Res is the Reynolds 
number defined by Saffman (1978), which involves the curvature-induced strain rate. 
It is found to be the appropriate choice since then aI(P) varies weakly with core thick- 
ness p .  The three most nonlinearly amplified modes are a mean azimuthal velocity 
in the form of opposing streams, an n = 1 mode (n  is the azimuthal wavenumber) 
which arises from the interaction of two second-mode bending waves and the har- 
monic of the primary second mode. When a single wave is excited, higher harmonics 
begin to grow successively later with nonlinear growth rates proportional to n. The 
modified mean flow has a doubly peaked azimuthal vorticity. Since the curvature- 
induced strain is not exactly stagnation-point flow there is a preference for elongation 
towards the rear of the ring: the outer structure of the instability wave forms 
a long wake consisting of n hairpin vortices whose waviness is phase shifted n/n  
relative to the waviness in the core. Whereas the most amplified linear mode has 
three radial layers of structure, higher radial modes having more layers of radial 
structure (hairpins piled upon hairpins) are excited when the initial perturbation is 
large, reminiscent of visualization experiments on the formation of a turbulent ring 
at the generator. 

1. Introduction 
Among the many mechanisms by which a vortex may become unstable, the present 

work is concerned with an inviscid instability which occurs when a vortex is strained, 
either by other vortices or, as in the case of a vortex ring, by other portions of the 
curved vortex itself. It is exemplified for long waves by the Crow (1970) instability 
of aircraft trailing vortices, for intermediate wavenumbers by either the Widnall 
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instability of vortex rings or the translative instability of Pierrehumbert & Widnall 
(1982) in mixing layers, and for very short waves by the Pierrehumbert (1986) and 
Bayly (1986) instability: Saffman (1988) discusses all three in a unified way. In 
the region of the parameter space accessible in vortex ring experiments (relatively 
low Reynolds numbers and not too thin cores) it is the intermediate wavenumber 
instability that has been observed. A heuristic but useful way of understanding all 
three forms of the instability, expounded in Widnall, Bliss & Tsai (1974, hereafter 
WBT), is that a rectilinear vortex has only neutral inertial waves which rotate around 
the core: those waves that rotate with sufficiently small angular velocity are amplified 
when a straining field is imposed. Turbulent vortex rings form either after undergoing 
such an instability (Maxworthy 1977) or soon after fluid is ejected at a pipe or orifice 
via a process which is less clear Glezer (1988). 

Despite the success of the WBT model in predicting the observed number of waves 
and the rigorous treatment of Widnall & Tsai (1977, hereafter WT) which predicts 
the growth rate, there remain a number of important unresolved issues and we 
believe that they may be addressed by numerical simulation of the Navier-Stokes 
equations. Three goals were set at the outset: to investigate some open questions 
regarding the linear phase of the instability, to investigate the nonlinear phase of the 
instability and the transition to turbulence, and to study some mechanisms which may 
be important during the formation of a turbulent ring at a vortex generator. This 
contribution is a partial fulfillment of these goals. The next section supplies some 
details of the numerical method and 53 discusses the initial conditions and parameter 
space explored. Section 4 presents results and is divided into sub-sections. The 
first sub-section considers a random perturbation and illustrates the basic features 
of the instability. By presenting growth rates and mode shapes it first shows that 
the predictions of the heuristic theory remain qualitatively correct even for thick 
cores and then discusses some early nonlinear effects such as the rapid growth of 
low-order azimuthal modes. This sub-section also serves as a pedagogical platform 
for introducing required background terminology. 

The work in 9 4.2 investigates why the peak growth rate in 5 4.1 is smaller than the 
theoretical value. Several runs at different Reynolds numbers and initial core sizes are 
performed to show that of all the possible contributors to the difference, viscosity is 
the main one for the range of Reynolds numbers considered. The conclusions receive 
support from the analysis of Landman & Saffman (1987) for the elliptic streamline 
flow. The time of initial waviness and wave breaking as a function of piston Reynolds 
number in the experiments of Liess & Didden (1976) is considered. It is shown that 
Reynolds number effects during the formation of the ring and in the development 
of the mean core structure are alone sufficient (i.e. using inviscid non-rotating mode 
growth rates) to predict the slowing of the instability with decreasing piston Reynolds 
number. Therefore such experimental data are not by themselves indicative of a direct 
viscous effect on growth rates. 

Sub-section 4.3 considers an initial perturbation consisting of a single azimuthal 
Fourier mode. In addition to the Gaussian basic state used in previous sections, an 
‘equilibrated’ basic state is also considered. At the Reynolds number considered, only 
minor differences in the evolution of modal energies during the transient are detected. 
Even with the use of equilibrated initial conditions an elongated wake structure is 
formed indicating that it is due to the instability rather than due to the wake formed 
as a result of axisymmetric unsteadiness. 

In the final sub-section a case of large perturbation is briefly presented motivated 
by the consideration that this may describe 2 state after other instability mechanisms 
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have developed such as the Kelvin-Helmholtz instability, centrifugal or inflectional 
instability due to ingestion of opposite-signed vorticity during ring formation or a 
Lin-Corcos (1984) collapse of axial and radial vorticity in a stretched vortex layer. 
It is found that a wake structure with many layers of hairpin vortices is formed, 
reminiscent of the flow visualization experiments of the formation of turbulent rings 
(Glezer 1988). 

The paper closes with a discussion of experimental observations which remain 
unexplained and plans for investigation into the later stages of transition. 

2. Numerical scheme 
The incompressible Navier-Stokes equations are solved using primitive variables. 

It is well recognized that both in Cartesian (Harlow & Welch 1965) and in general 
curvilinear coordinates (Orlandi 1989) it is convenient to use staggered velocities, 
i.e. to locate each velocity component at the centre of the cell face normal to that 
component, and to locate the pressure at the centre of the cell. This gives the most 
compact form for the discrete divergence and gradient operators, gives well-structured 
matrices and readily yields a solenoidal velocity field to within round-off error. 

We employ cylindrical coordinates and introduce the quantities 

4e = Q, qr = rVr r  q z  = VZ. (2.1) 

As will be discussed later, use of the quantity qr simplifies the treatment of the region 
near r = 0. The Navier-Stokes equations thenbecome 

Dqs - 1 d p  
Dt r d o  Re d r  r d r  r2 do2 dz2  13 ae ' 

1 [ - d ( Idrqo)  _ _ _  +--+- 1 d2qo a2q8 +--I 2 aqr (2.2 a )  

(2.2 b )  

(2.2 c )  

(2 .2d)  

(2.2 e )  

(2 .2f l  

The numerical scheme used is described in detail in Verzicco & Orlandi (1993); 
here we summarize the main features. Second-order central differences are used in 
all directions. Energy is conserved in the absence of viscosity and time-differencing 
errors. Time advancement is performed based on the fractional step method of Kim 
& Moin (1985). The equations are provisionally advanced with the pressure at the 
previous time step and this results in a velocity field which is non-solenoidal. A 
quantity @, similar to the pressure, is then introduced to obtain a velocity field which 
is solenoidal. In the present method, a multi-step scheme, in particular the third-order 
Runge-Kutta method of Wray (1987) is used for the nonlinear terms. This requires the 
calculation of @ at each sub-step. The quantity @ satisfies an elliptic equation which 
does not require boundary conditions. The elliptic equation is solved by FFTs in the 
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azimuthal and axial directions, using second-order-accurate modified wavenumbers. 
The solution in the radial direction is reduced to the inversion of a tridiagonal matrix. 
This procedure is very efficient and obtains a divergence-free velocity field to within 
round-off errors. The amount of CPU time required to calculate GJ is less than the 
CPU time necessary to perform the advancement sub-step. 

The coordinate system is singular at r = 0. The advantage of using the quantity 
qr = rvr is that on a staggered mesh only qr needs to be evolved at r = 0 and its 
definition forces it to vanish there. The only term which requires a treatment at r = 0 
different from the interior scheme is the following viscous term: 

1 drqe 1 d2rq0 + -- 
dr r ar r2 d r  r dr2 

in which the last difference quotient is one-sided (first order). Only the radial indices 
are written in (2.3) and the 1/2 indices refer to locations at the centre of an (r ,  0) face 
where the quantity rq0 is stored on a staggered mesh. 

A uniform grid in a finite domain is used. At r = L, the condition of an inviscid 
wall is imposed and periodic boundary conditions are employed in the axial direction 
with period length Lz.  

3. Initial conditions and run parameters 
3.1. Basic states 

For most of the cases the unperturbed azimuthal vorticity is simply a Gaussian 
function of distance from the centre of the core: 

superposed with a Gaussian of the opposite vorticity centred at (0,-R) in order to 
make the vorticity vanish at the axis. Here ou and R are the initial core radius and 
toroidal radius of the ring, respectively. For thin rings, the Gaussian maintains its 
form while its core size spreads as a2(t) = g,” + 4vt (Saffman 1970). However, as 
o,/R increases, curvature effects will be felt and the initial condition (3.1) will not be 
steady. For the largest core to ring radius ratio of g u / R  = 0.4131 considered in this 
study (3.1) is not a steady state. For core rotation frequencies not small compared 
to the growth rate, unsteadiness would act as parametric forcing on the instability 
waves. In order to rule out that some aspects of the observed results are a peculiarity 
of the unsteadiness an equilibrated vorticity is also briefly considered. A Gaussian 
core is evolved axisymmetrically until it adjusts to a state of near inviscid equilibrium. 
The actual procedure consists of evolving the Gaussian core for 80R2/r time units 
at a higher T / v  of 15000 to prevent the core from becoming too thick, followed by 
evolution at T / v  = 5500 for 20R2/r time units. Figure 1 verifies that this procedure 
results in satisfaction of the condition for inviscid steadiness that, in a reference frame 
moving with the vortex, coH/r be some function of the Stokes streamfunction, y.  The 
observed functional relationship should be contrasted with the linear relationship that 
seems to be preferred in planar flow (Leith 1984; Couder & Basdevant 1986). 
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w w 
FIGURE 1. Scatter plots of azimuthal vorticity us. Stokes streamfunction at all the grid points 

(a, = 0.4131). (a) Gaussian initial condition. (b)  Equilibrated initial condition. 

3.2. Initial perturbation 
To first specify the azimuthal vorticity imagine vortex lines to be radially displaced 
to r’(8) from their unperturbed position r,: 

(3.2) r’(8) = r, [l + eg(8)l. 

The space curves describing the vortex lines and the unit tangent are 

- ax  ax  
t = -/I - 1 ae ae x = r’(8) [cos 82 + sin 8jq , (3.3) 

Two types of perturbations are considered. In one g(8) is a single sine wave and in 
the other g(0) is a sum of Fourier modes with unit amplitudes and random phases. 
The angle p between the perturbed and unperturbed vortex lines is given by 

h A -  

cos p = t .8, where 8 = - sin 82 + cos Oy. (3.4) 

Let ~ ( z ,  r )  denote the axisymmetric basic state vorticity (either Gaussian or equili- 
brated). We first specify oe of the perturbed field by imagining ~ ( z , r )  to be the total 
vorticity pointing along the tangent to the perturbed vortex lines: 

oe(z, r’, 0) = ~ ( z ,  r )  cos p(8). (3.5) 

The axial vorticity is set to zero since the toroidal axis of the ring is assumed to be 
displaced only radially. The radial vorticity is then obtained by requiring the vorticity 
field to be divergence free. Since oz = 0 this gives 

w =-- I Lr *dp. 
r ae 

For the case of a random perturbation, the procedure was slightly different: the 
axisymmetric vorticity field is considered to be radially displaced but not turned 
towards the tangent, i.e. cosp is set to 1 in (3.5). 

3.3. Run parameters 
Simulation results are made non-dimensional using the initial circulation r and 
toroidal radius R. The computational domain for random perturbation cases is 
(Lz,  L,, LO) = (6R, 4R, 27~). When a single azimuthal mode n is excited, the computation 
is performed in the smaller domain Lo = 2rc/n. Axial periodicity and the inviscid wall 
are expected to make a negligible difference compared to an unbounded ring. With 
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Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Basic state 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 

Equlibrated 
Equlibrated 

Gaussian 
Gaussian 

U" 

0.4131 
0.4131 
0.4131 
0.4131 
0.4131 
0.3099 
0.3099 
0.3099 
0.3099 
0.3099 
0.3099 
0.2066 
0.2066 
0.4131 
0.4131 
0.4131 
0.4131 
0.4131 

T / v  Modes excited E 

5500 [1,241 0.0002 
4000 [ I 3 1  0.0002 
3000 [ I 3 1  0.0002 
2000 V3.1  0.0002 
1200 [1,321 0.0002 
10000 0.00009 
7000 ~1,321 0.00009 
5500 [ W I  0.00009 
4000 [ W I  0.00009 
3000 [ I 3 1  0.00009 
2000 ~1,321 0.00009 
5500 [1,321 0.00009 
4000 [1,321 0.00009 
5500 5 0.00016 
5500 5 0.00016 
5500 5 0.02 
5500 5 0.02 
5500 5 0.02 

TABLE 1. Run parameters 

No x N ,  x N, 

97 x 97 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
129 x 129 x 129 
65 x 97 x 129 
65 x 97 x 129 
65 x 97 x 129 
65 x 97 x 129 
97 x 129 x 129 

At 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.10 
0.10 
0.10 
0.10 
0.05 

tfina1 

90 
90 
90 
90 
90 

89.75 
90 
90 
90 
90 
90 
90 
90 
90 
100 
50 
50 
60 

the help of the streamfunction of a ring of zero cross-section (a valid assumption 
for widely separated rings) inside a tube (Brasseur & Chang 1980) we find that the 
extraneous strain rate induced by an infinite array of such rings is, in the worst case, 
2% of the strain rate (due to curvature of the ring itself) which drives the instability. 

Table 1 provides run parameters for the cases considered. Three initial core sizes, 
o,, referred to as full, 3/4 and half cores are considered. Some of the Reynolds 
numbers may seem large for the spatial resolutions employed. In a scheme such as 
ours which conserves energy in the inviscid limit, loss of resolution is usually indicated 
by energy pile-up near the cut-off scale and we ensured that this does not happen for 
the highest Reynolds number case (Case 6). 

In order to make estimates from the available theoretical results for a uniform 
vorticity profile, effective core sizes are defined. For adapting theoretical results for 
the number of waves and growth rates, the distance, a1 = 1.12141a0, where the 
tangential velocity is maximized, is used. This choice is motivated by Saffman's 
(1978, hereafter S78, p. 630) observation that, for a particular family of profiles, 
the wavenumber for non-rotating waves on a rectilinear vortex varies less when 
normalized by a1 than when normalized by the speed-effective core size a, (i.e. the 
core size of the uniform-vorticity ring which matches the speed of Gaussian ring). 
Furthermore, the eigenvalue problem for rotation rate was solved numerically for the 
Gaussian profile. Whereas the wavenumbers for the non-rotating second and third 
modes for uniform vorticity are kal = 2.51 and 4.35, they are kaO = 2.26 and 3.96 for 
the Gaussian profile giving effective core sizes of 1 . 1 1 ~ ~  and 1.100,~ respectively. 1- 

Table 2 provides some inviscid parameters. To aid interpretation of time sequences 
an eddy turnover time, z,, defined to be the period of revolution of a particle at 
radius a1 in the Gaussian profile, and tD, the time in which the ring travels one ring 

t Generality is not implied in these observations. There are profiles in the literature which attain 
a maximum of tangential velocity at the core boundary but which have subtantially different values 
of the non-rotating wavenumbers than the uniform-vorticity core. 
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0 0  ze TD “WT2 “WT3 

0.2066 2.96 8.11 0.1601 0.1542 
0.3099 6.67 9.33 0.1307 0.1246 
0.4131 11.8 10.4 0.1092 0.1030 

TABL~, 2. Inviscid parameters 

Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

16-18 

Res Rep ReU L/De 
87.3 4565 2106 2.75 
63.5 3320 1531 2.75 
47.6 2490 1149 2.75 
31.7 1660 766 2.75 
19.0 995.9 459 2.75 

110.0 10090 4286 1.53 
77.0 7060 3000 1.53 
60.5 5547 2357 1.53 
44.0 4034 1714 1.53 
33.0 3026 1286 1.53 
22.0 2017 857 1.53 
34.0 7117 2712 0.726 
24.8 5176 1973 0.726 
87.3 4565 2106 2.75 

TABLE 3. Additional parameters 

tP 
140.0 
102.0 
76.7 
51.0 
30.6 

144.0 
101.0 
79.0 
57.4 
43.1 
28.7 
35.1 
25.5 

140.0 

diameter, are provided. Both quantities are based on initial properties of the ring. 
The quantity RWTZ is the growth rate of a non-rotating second-radial mode from the 
WT theory: 

which is valid for thin cores. Note that due to an error in applying their table 1 and 
equation (8.13) the value of the last coefficient in equation (9.2) of WT should be 
0.4535 rather than 0.1138. Similarly, aWT3 denotes the growth rate of the third radial 
mode. 

To provide an idea of how much viscous core spreading will affect the instanta- 
neous wavenumber, n, of the most amplified wave, table 4 (second column) 
corresponding to the second radial mode at t = 0,45, and 90, rounded to the 
integer, i.e. 

2.51R 
1.12141c~(t)’ 

n(t)  = 

where 

02(t)  = a; + 4vt. 

gives n 
nearest 

( 3 4  

(3.9) 
To guide (roughly) the placing of the simulations within the parameter space 

of existing experiments, table 3 provides estimates of parameters for a tube-type 
apparatus using the formulae in S78. One first needs to match, in some way, the 
Gaussian profile with the hypergeometric profile predicted by the model of self-similar 
vortex sheet roll-up with viscosity. The shape of the profile has two parameters: a core 
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size, a, beyond which the vorticity vanishes and F, which characterizes its peakiness 
or relative inner core size. It is related to the core sizes a, and a1 by 

0.47 + 0.632 
a1 1.45F . 
- - - (3.10) 

Using the value for the Gaussian profile on the left-hand side gives 2 = 0.416. That this 
is a reasonable value is indicated by the fact that the corresponding hypergeometric 
profile has kal = 2.43 for a non-rotating second mode whereas the Gaussian profile 
has kal = 2.53. 

To estimate LID,, the piston stroke to exit diameter ratio, start with the identity 

(3.11) 

where a, is the speed-effective core size (= 1.36070, for the Gaussian profile). Saffman 
provides estimates for each of the factors on the right: t 

(3.12) 
ae a 2/3 D, [ (D”,) 2/3] -’ 
- = 0.47 + 0.63F, - = 0.28 (5) - = 1 +0.22 - a D, ’ 2R 

which may be substituted into (3.11)) and solved for LID,. Saffman’s expression for 
circulation gives the piston Reynolds number as 

(3.13) 

where Up is the piston speed. Glezer (1988) has determined the region in the L / D ,  
and T / v  plane which leads to initially turbulent rings. Although he did not employ a 
tube-type apparatus for which the above estimates are appropriate, it is worth stating 
that the present values fall in the non-turbulent region of his transition map. 

For laboratory rings Z depends on Reynolds number and time, t, from the start of 
the piston motion: 

(3.14) 6 = 4vt /a2.  

According to S78 (his figure 3) the 0.416 fit to the Gaussian profile is close to the 
values attained by rings at the onset of waviness in the range of Re, of the present 
runs. Table 3 provides the time, t ,  (in simulation units), from the start of piston 
motion at which the assumed value of Z would be realized. Future numerical work 
might benefit from first considering experimental parameters and then using the 
appropriate hypergeometric profile. 

In addition to ReD, based on ring speed and diameter, table 3 gives a Reynolds 
number which we shall find is more relevant in determining the character of the 
instability. It was first defined in S78 and is the ratio of the strain rate, e, due to 
curvature which drives the instability and the scale for the viscous damping rate: 

-2 

eal 
Res = -. 

V 
(3.15) 

t A factor of 2 missing in Saffman’s equation (3.3a) is inconsequential since the coefficient 0.22 in 
equation (15c) is a fit to experimental data. Coefficients provided later by Pullin (1986) and Didden 
(1979) are more accurate only for short stroke lengths. 
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Q, 6.4 

Fitiuw 2. Vorticity components at t = 70 in the ( r ,  8 )  plane of maximum I w / .  For w, and w, 
dashed and dotted lines represent positive and negative values, respectively. (Case 1). 

The value of e is obtained from an estimate in S78: 

(3.16) 

The parameter Res also governs the effect on the instability of viscous spreading of 
the mean flow, i.e. the instantaneous growth rate, a, can be evaluated using the locally 
frozen core provided it is much larger than the viscous spreading rate: 

(3.17) 

Owing to viscous damping or wave rotation in the strain-free case, the growth rate 
will typically be smaller than e ;  hence for (3.17) to hold it is necessary that Res 9 1 .  

4. Results 
4.1. Gaussian basic state; random perturbations 

In the first case, the perturbation g ( B )  is specified as a sum of Fourier modes with 
unit amplitude and random phases (Case 1). 

After some time a distinct pattern emerges (figure 2). Contours of azimuthal 
vorticity (we) most resemble flow visualization experiments. The n = 6 wave is 
dominant and it has the tell-tale signature of the second radial mode consistent with 
flow visualization experiments: for instance at a section where contours in the inner 
core are displaced towards the coordinate axis, contours in the outer core (both closer 
to and farther away from the coordinate axis) are displaced outward. In the axial and 
radial components the signature of the second radial mode is three layers arranged 
radially. The two components are in phase in each layer, suggestive of vortex lines 
inclined to the direction of propagation, and there is a phase shift of 0 = +n/n 
between adjacent layers. At early times the peak axial and radial vorticities grow 
together while the peak azimuthal vorticity decreases slightly, For t > 70 the axial 
component dominates the radial, an indication of axially elongated structures to be 
discussed later, and the axial component begins to grow. 

In figure 3 is displayed the evolution of the energy En in different azimuthal modes 
through three phases: transient, normal mode and early nonlinear. Modes n = 2 
and 3 continue to have oscillatory behaviour, probably because the smallness of their 
growth rates relative to the time scale of axisymmetric core unsteadiness allows them 
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FIGURE 3. Evolution of modal energies (Case 1). - , n =  1 to 8:.,  1; 0 ,  2 ; 0 ,  3; A , 4 ;  o, 5 ;  
v , 6; + , 7 ;  x , 8. ---- , n = 9 to 14: , 9; , 10; 0 ,  11; , 12; A ,  13; 0 ,  14; 

0.08 1 V 
il 

0 5 10 15 0 5 10 15 
n n 

FIGURE 4. Growth rates for Case 1. (a) For the total energy at t = 45. Modes n = 2 and n = 3. have 
oscillatory behaviour and are not shown. (h)  For the encrgy in the azimuthal velocity component 
at t = 75. 

to be forced by the unsteadiness. The mean mode (n  = 0) is not shown but has an 
energy of lo2 which decreases slightly in time. 

Growth rates, a,, = 1/(2E,)(dE,/dt), evaluated at t = 45 when linearly growing 
eigenmodes have begun to dominate over transients, are shown in figure 4(a). Two 
bands of growing waves centred about n = 6 and 10 are observed. As a means of 
reviewing some basic concepts, let us understand this by considering the heuristic 
picture of WBT for the linear instability according to which the growth rate is 
estimated as 

(4.1) 
7 2 112 m = ( e - - a )  , 

where 0 is the rotation rate of waves in the unstrained rectilinear vortex. One must 
resort to the heuristic model because the full stability analysis involves a non-separable 
two-dimensional eigenvalue problem. Figure 5 plots the rotation rate (divided by core 
vorticity) for bending waves on a rectilinear vortex of uniform vorticity (Kelvin 1880). 
The term ‘bending’ refers to modes in which the axis of the vortex is displaced into 
a helix. Each curve represents a mode with a different number of zero crossings as a 
function of distance from the core centre: the mode labelled ‘0’ has no zero crossings 
and is called the mode of pure bending, the mode labelled ‘1’ has one zero crossing 
and is referred to as the second radial mode and so on. A ring can support only an 
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FIGURE 5.  The application of the heuristic model to predict the behaviour for Case 1. See text for 
description. 

ka1 

integer number of waves, n, such that kal = (a l /R )n  and these values are indicated 
by the triangles. The two horizontal lines represent the strain rate: modes having 
rotation rates bounded by these lines should be unstable according to (4.1 j. Thus we 
see that there are groups of unstable waves: n = 5 and 6 should be unstable to a 
second radial mode with n = 5 dominant, n = 9 and 10 should be unstable to a third 
radial mode, etc. -f Thin rings may display unusual behaviour: since the height of the 
horizontal lines - O(a:/R2)  while the spacing between the discrete modes is O(al /Rj ,  
the probability of finding an unstable mode becomes smaller for thin cores. For 
instance, it is possible that there are no unstable second radial modes but unstable 
third radial modes do exist. 

The simulation result shows two, albeit wider, bands of linearly unstable waves. To 
ascertain the character of each wave, mode shapes of the radial vorticity are plotted 
(figure 6). There are qualitative similarities with the predictions of the heuristic model. 
One observes a group of waves ( n  = 4-8) with the structure of the second radial mode 
which has two nodal lines in the radial direction and a group of waves (n  = 9-12) 
which are third radial modes with four nodal lines. All modes (except for n = 13) 
have the form one should expect from two-dimensional eigenfunctions, namely, they 
should be roughly even about the core centre. 

Growth rates in the nonlinear phase are shown in figure 4(h). The azimuthal 
component of energy was chosen because it illustrates the rapid development of a 
mean (n  = 0) azimuthal flow. Owing to the type of perturbation applied, the energy 
in this mode is initially zero but it begins to amplify steadily from the round-off 
threshold at about t = 50. Its energy at t = 75 is still very low [O(10-9)]. Figure 
7(aj illustrates that it has the form of opposing streams necessary to conserve angular 
momentum. The next most nonlinearly amplified wave at t = 75 is the n = 1 wave. 
It is linearly neutral but at t = 90 it is the dominant of the nonlinearly amplified 
waves. Its mode shape (with three layers in figure 7) indicates that it results from 
an interaction of two second radial modes and the growth rate of its total energy 
at t = 75 is the sum of the growth rates of modes n = 6 and 7. This mode causes 

t For clarity, the family of modes having the opposite sense of twist have been omitted in figure 
5. Weak instabilities may result at the SZ # 0 crossing points of the two families (Widnall & Tsai 
1977). 
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FIGURE 7. (a) Mean azimuthal velocity at t = 90. The ring motion is downward: - , in the 
direction of mean azimuthal vorticity; ...-.... , opposite to the mean azimuthal vorticity. Contour 
increment = 5 x (b)  Vorticity magnitude for superposition of the mean (n = 0) and n = 1 
modes ( t  = 90). The section is the one of maximum (total) [mi. Contour increment = 0.10. 

contours of 1 0 1  to be alternately compressed and expanded in r (figure 7b). After 
the instability waves break Maxworthy (1977) observed the pulsed motion of dye 
in the azimuthal direction accompanied by a pulsation in core diameter. From this 
he inferred the presence of a single bulge wave which propagates in the azimuthal 
direction at a speed comparable to circumferential velocities in the core. The rapidly 
developing mean swirl and n = 1 modes may be precursors of these features. 

The next most amplified wave is n = 12, the harmonic of the most linearly amplified 
mode. As nonlinearity proceeds, all mode shapes except for the primary ones (5, 6 
and 7) take on a 'sheared' appearance indicative of the appearance of secondary 
extrema in their radial behaviour. For instance figure 8 shows the mode shape for 
n = 4. Its form is consistent with its original second radial mode structure superposed 
(with an angular phase difference) on a structure created from a nonlinear interaction 
involving one or more third radial modes. 

4.2. Viscous efects on the growth rate 
The growth rate of the theory (0.1092) is larger than the peak growth rate of the 
simulation. Several factors may account for this difference: (i) The theory assumes a 
non-rotating wave whereas it is unlikely that a wave will have exactly the value of 
kal required for this to be true. In general waves will be rotating in the strain-free 
case and the growth rate will be reduced. (ii) The theory is valid for thin cores 
and correction terms may be significant for the thick core of the present run. (iii) 

FIGURE 6. Mode shapes of the radial vorticity (Case 1, t = 60). Contour increment is 0.025 for the 
total and 0.002 for the rest. To bring this figure into the same orientation as the rest, rotate the 
page 90" counter-clockwise. 
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FIGURE 8. Radial vorticity for the n = 4 mode at t = 90. Contour increment = 2 x 

The difference in assumed vorticity distributions is not satisfactorily accounted in the 
growth rate by the effective core size al. (iv) There is a viscous correction. 

This section demonstrates that (iv) accounts for most of the difference. Consider 
the one-term correction for the growth rate about its inviscid value ao: 

where j? = al/R. The regular perturbation form is valid provided there are no critical 
layers. It is not obvious what this means for a non-separable eigenvalue problem but 
by analogy with circular streamline flow one might say that there are no critical layers 
away from the neutral point and near the neutral point provided the angular phase 
velocity of the wave is nowhere the same as the angular velocity of fluid particles. If 
(4.2) is valid up to the point of damping then al(P) is the critical Reynolds number 
for the mode. We will see that the choice Re,. for the Reynolds number makes ar(P) 
least sensitive to 8. 

In the simulations normal-mode behaviour is present in a certain window of time 
in which for different T / v  the basic flow has spread by different amounts. This forces 
us to consider the viscous correction in two ways. The first serves to describe the 
simulation results but cannot be readily used outside of this work for quantitative or 
modelling purposes. The second is more fundamental but only scant information can 
be obtained from the simulations. The first viewpoint considers the growth rate at 
fixed time t (normalized by r and R )  for a fixed wavenumber n with the parameters 
Res and /3 referred to t = 0. Hence, the effects of both viscous damping as well 
as the shift in kal(t) as al grows are observed. The second viewpoint considers the 
instantaneous growth rate of a fixed-kal mode with parameters Res and @ referred 
to the present. This is closer to the type of information a viscous stability analysis 
would provide. Using (4.1) it is not difficult to show that for an initially non-rotating 
wave (Q(0) = 0), the decrease in growth rate from its value at the initial instant to its 
value at time t which comes about due to core spreading is U(l/Res2).  This partly 
accounts for the agreement we will observe for the most amplified wave between 
results adopting the two viewpoints. On the other hand if Q(0) # 0 the decrease or 
increase in growth rate is O(l/Res) .  

Figure 9 presents results adopting the first viewpoint. It plots growth rate scaled 
by the WT value for the second or third radial mode, as appropriate, for several YE 

and different initial Reynolds numbers. The growth rates are obtained as an average 
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FIGURE 9. Viscous effect on growth rates of selected modes. (a )  Full-core cases: A , n = 4; 0 , n = 5 ;  
, n = 6; o , n = 7; , n = 10. (b)  Medium-core cases: A , n = 6 ;  o , n = 7 ;  , n = 8; o , n = 9; 

*, the curve for n = 6 from (a). 

between t = 45 and 60 for the full-core cases and between t = 40 and t = 60 for the 
medium-core cases. For the medium-core case at high Reynolds numbers the energy 
growth for the lowest n in the figure has small oscillations which disappear as the 
Reynolds number is decreased while oscillations and some curvature appear for the 
higher n. For the full-core cases, oscillations and curvature appear for the highest 
wavenumber at low Reynolds numbers. 

First consider the full-core cases (figure 9a). The result for n = 6 ( ) follows (4.2) 
well even up to the point of damping, with the inviscid limit being close to the WT 
value. Hence we rule out factors (iF(iiij listed above as playing a large role. The 
levelling or decrease in the curves for n = S ( o j and n = 4 ( a ) at the highest 
Reynolds numbers is due to core spreading: with decreasing Reynolds number, the 
core thickens more rapidly and these modes are closer to the non-rotating wave of 
the rectilinear vortex at the observation time. 

To assess the effect of the parameter p, runs are performed for a core 3/4 as thick 
(Cases 6-11, figure 9b). According to the heuristic picture the mode with a value kal 
closest to the non-rotating second mode is the most unstable. Therefore given that 
n = 6 is the most inviscidly amplified wave for the full core, we expect either n = 7 
or 8 or 9 to be the most inviscidly amplified wave here. We see from figure 9(b) 
that n = 8 ( ), the correspondent of the n = 6 wave of the full core is the most 
amplified inviscid wave. For this mode values for ct1 range between 20.0 and 22.8. 
This is not too different from the range (19.7-21.11 for n = 6 in the full-core cases. 
On the other hand the dependence is more sensitive if T/v is used as the Reynolds 
number: then the range of ctl is 1244-1328 for the full-core cases and 1818-2069 for 
the 3/4 core. As one would expect, for the same value of T/v the magnitude of the 
viscous correction is larger for a thinner core. Similarly if ReD is used the ranges 
are 476-SO9 for the full core and 779-887 for the 3/4 core. It may be worth noting 
that Glezer’s (1988) transition map (his figure 6) for turbulent rings immediately after 
ejection displays the opposite trend, namely, higher L / D e  ratios have a higher critical 
i- /v,  suggesting that the transition mechanism there is quite different. 

Finally, note that while the second and third radial modes (n  = 10, figure 9a) 
have nearly identical inviscid growth rates, viscosity damps the third mode faster. 
Symbols for the two lowest Reynolds number cases are omitted since the mode is 
highly damped and normal-mode behaviour is not discernible. 

With respect to the second viewpoint, a complete mapping of the parameter space 
is not possible from the available simulations since in the period of normal-mode 
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FIGURE 10. Growth rates of the most amplified wave for the Cases 1-13. Kes  was evaluated at the 
instant the growth rate was computed. Cases: a, 1; , 2 ;  , 3; 0 , 4 ;  0 ,  5; +, 6; A, 7; 1, 8; V, 9; L ,  
10; x , 11; v , 12; , 13. ---- , 1 - 18/Res. 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Most amplified 
n expected 

Most amplified 
n observed 

at t 
6 
6 
5 
4 
4 
8 
7 
7 
7 
6 
6 
9 
8 

Dominant n 

52.5 0.51 
52.5 0.53 
52.5 0.55 
52.5 0.59 
57.5 0.68 
52.5 0.38 
52.5 0.40 
52.5 0.41 
52.5 0.43 
52.5 0.46 
52.5 0.50 
52.5 0.32 
52.5 0.35 

6 
6 

6, 5 ( t  = 65) 
5 
4 

8, 7(t = 78) 
8,7 ( t  = 57) 

7 
7 
7 

7, 6(t  = 39) 
10,9 (t  = 80) 

10,9 ( 1  = 51),8 ( t  = 86) 

TABLE 4. Most amplified and dominant wavenumbers 

behaviour the values of kal for the different n, the values of Res and a l / R  differ 
widely. Therefore we shall focus only on the most amplified mode. Figure 10 plots 
for each of the 13 cases the value of cc/awT2 for the most amplified wave with Res 
evaluated at the instant the growth rate is computed (more precisely, at the mid-point, 
t, of an averaging interval of width At = 15), assuming the spreading law (12). The 
corresponding values of al ( t ) /R  and n are given in table 4. 

Despite differences in a l / R  and n, the data are approximated well by the line 
1 - 18/Res. It should be noticed that if the most amplified n is the one closest to the 
inviscid non-rotating wave, then the values of nar/R must lie between 2.51 f q/ (2R) .  
This fails to be true in many cases (most prominently for Case 2) and its cause is not 
understood. 

In a spectral simulation of the Widnall instablity in a triply periodic cube, Has- 
selbrink (1992) observed that the dominant number of waves indicated by surface 
contour plots switched in time from 9 to 8 and then to 7 and found that the cor- 
responding value of k ~ ( t )  increases away the value for the second radial mode but 
returns close to it after each switch. The switching phenomenon is also present here. 
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The last column of table 4 shows the most energetic mode; times at which switchings 
occur are shown in parenthesis. Note the expected delay in some cases between the 
time when a mode is most amplified and the time at which it becomes dominant. A 
unit change in the number of waves has no experimental precedent to our knowledge. 

The result that Re.7 is the appropriate Reynolds number and the value of the 
coefficient a1 is consistent with the effects of viscosity on a two-dimensional flow 
with elliptical streamlines (Landman & Saffman 1987, hereafter LS). First, make the 
assumption (to be checked below) that the regime of the elliptical flow appropriate 
to even rather thick vortex rings is one of small BLs = eLs/y. Here eLs is the rate of 
strain in the elliptical flow and 1% is half the value of the vorticity, which is uniform. 
We are employing the same symbols as Landman & Saffman, using the subscripts LS 
to distinguish them from our symbols only where necessary. Correspondence between 
this flow and an isolated elliptical vortex patch with imposed strain is obtained by 
matching streamline aspect ratio, A. For small strain one has eL,7/y = I - 1 in the 
former case and 2e/y = A - 1 in the latter so we identify with 2e. That this 
is valid is also indicated by the fact that the peak growth rate is ( 9 / 1 6 ) ~ ~ ~  + O& 
for the elliptical flow (Waleffe 1989) but nearly e for the elliptical patch (Robinson 
& Saffman 1984). Hence we take pLs  = 4e/c where ( = T / ( m : )  is the ‘average’ 
vorticity in the vortex ring. 

Figure 2 in LS provides the critical value of E, (an inverse Reynolds number), 
above which all modes are stable (for small p L s ) :  

where k ,  is the wavenumber of the most amplified disturbance and c1 is a positive 
constant included to point out the downward deviation from the leading behaviour. 
For the thickest vortex ring simulations we have 4e/5 = 0.2 and figure 2 in LS 
shows that the leading term in (4.3) is still quite accurate. Dividing (4.3) by ~ L S  

transforms E,  to something cc l/Res and eliminates the leading order dependence 
on pl,s. In particular, putting the axial wavenumber k = k,cosBr.s with 13Ls = 
z/3 - c$Ls + O(/3zs) (c2 E 0.24 from figure 3 in LS) and using kal = 2.51 for the 
second radial mode we obtain for the critical value of Res 

(Res) ,  = 24.4 [l- (3.5~2 - .31q) PLS + O(P&)] . (4.4) 

The leading-order term compares reasonably with the value (= 18) obtained from the 
vortex ring calculations. If we put kul = 4.35 for the third radial mode, the leading 
factor is changed to 73.2 which should be compared with the value (E 50) observed 
from the vortex ring simulations. It should also be noted that the one-term viscous 
correction is exact in the elliptic streamline flow. 

The time or location at which initial waviness and breaking is observed in the 
laboratory, although dependent on the judgement of the observer, is the only avail- 
able diagnostic related to the growth rate. Liess & Didden (1976) provide time 
measurements for L/De = 1.4 which indicate slowing of the instability as the piston 
Reynolds number, Re,, is decreased. At first glance, this would seem to be a result 
of the viscous correction. The situation is more complicated, however. As mentioned 
earlier, Re, affects the initial and developing core structure and this can alter the 
inviscid growth rate. Consider a model in which the inviscid growth rate is used and 
the effect of Re, on the core structure is accounted for by allowing the value of 2 to 
obey (3.14). An equation for the number of e-folds is evolved with initial conditions 
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FIGURE 11. Time when waviness appears ( t W )  and when the wave breaks ( t b ) .  + , Liess & Didden 
(1976) data for t , ;  A, data for t b ;  - , model with e, = 8.25 and 14 for the lower and upper 
curves, respectively. 

specified at the end of the piston motion: 

(4.5) 

where a( t )  is calculated using (3.7) and al( t ) /R and is obtained from (3.9)-(3.11). 
Times are recorded when ef reaches specified values en. The prediction of the model 
reasonably follows the experimental data (figure 11). Hence the presence of a direct 
viscous effect on the instability cannot be inferred from the behaviour with Re,. 

A referee suggested that we critically compare thc experimentally observed dom- 
inant n with existing models and the current results. Early experiments (Widnall 
& Sullivan 1973) present the number of waves as a function of a non-dimensional 
ring speed parameter, v, in order to bring out the connection with inviscid theory. 
However, Liess & Didden (1976) observed that with v = 3 and L/D = 1.4 (both 
fixed), n increased from 5 to 11 as Re, was increased. Maxworthy (1977) found the 
increase to be unabated at higher Re,. Saffman (1978) showed that this is due to the 
fact that as Re,, is varied the following change: (i) the shape (peakiness) of the initial 
vorticity profile and (ii) the rate of viscous growth of the core size. A third change 
might be a slight shift in the most-amplified kal with viscosity which manifests as a 
shift in OLs in the elliptic streamline flow. The present medium-core simulations cover 
the same range of Re, as the Leiss & Didden (1976) data and have a similar value 
of L / D e  (= 1.53) but n varies from 6 to 8 only (table 4). This is because only effect 
(ii) is present in the simulations. Saffman's estimates based on both effects reproduce 
the experimental data astonishingly well but there is room for improvement. Saffman 
assumed the dominant n to be given by the instantaneously most amplified inviscid 
mode, the instant being chosen such that Res = 60, a critical value chosen to fit 
experiments. In reality one should track the time-varying amplitude growth of each n 
separately and determine which reaches a critical amplitude first. The instantaneous 
growth rate should account for changes in the inviscid growth rate as the core grows, 
viscous corrections and wave rotation in the unstrained vortex. The elliptic streamline 
flow has all the ingredients necessary to build such a model. 
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FIGURE 13. Evolution of modal energies for cases with an n = 5 perturbation. 101.  (a) Gaussian 
initial condition; ( b )  equilibrated initial condition. - , n = 5 ;  ---- , n = 10; ---..... , It = 15; 

, n = 20- , n = 25; +, n = 30; 

4.3. EquilibriumlGaussian basic states; n = 5 perturbation 

While a random perturbation corresponds better to the experimental situation, vortic- 
ity dynamics and some aspects of nonlinear mode interactions are better understood 
when only selected modes are initially excited. In the present case, the initial per- 
turbation consists of a single azimuthal wavenumber ( n  = 5) known to be linearly 
amplified from Case 1 with random perturbations. The computation is performed in 
a fifth of the domain, allowing greater resolution. 

Figure 12 shows the azimuthal vorticity after roughly two eddy turnover times 
for the Gaussian and equilibrated basic states. The former case is undergoing 
axisymmetric adjustment and a tail has been shed in which one should expect axial 
vorticity to be intensified. Yet figure 13 shows that except for small differences during 
the transient and slightly delayed onset of the normal-mode behaviour, the two cases 
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FIGURE 14. Vorticity field for Casc 15 (n = 5 pcrturbation, equilibrated). The solid line represents 
azimuthal vorticity in all plots. The othcr component plotted in each row is indicated on the left 
and dashed/dottcd lines represent its positive/negative values. Contour increment for (or and w, is 
0.005 at t = 40 and 60 but 0.015 at t = 80. 

have very similar energy histories. Contour plots also indicated minor differences. It 
may be that at higher Reynolds numbers the tail shedding could lead to a 'bypass' 
transition. The growth rate is CI = 0.074 (equilibrium case) which agrees well with the 
value obtained with random perturbations. 

Figure 13 shows that the n = 10 harmonic starts growing exponentially due to 
nonlinearity when the fundamental reaches a certain amplitude. Thereafter higher 
harmonics begin to grow with progressively higher exponential rates. Nonlinear 
growth rates scale almost perfectly with n indicating that higher harmonics are 
created by products of lower harmonics. 

An effect of curvature is that whereas for a rectilinear vortex in a strain field there 
is no preferred direction for nonlinear steepening of the wave, here one observes that 
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FIGURE 15. Azimuthal vorticity for Case 15 ( n  = 5, equilibrated initial condition). The ring motion 
is downward. (u, 6) Azimuthal vorticity at the meridional sections 0 = 0 (solid) and 0 = 2n/10 
(dotted) at which there is maximum and minimum radial displacement of the core, respectively. 
(c) Azimuthal mean of azimuthal vorticity. Contour increment is 0.1 in all plots. 

elongation takes place behind the ring and a wake of mostly axial vorticity is shed. 
This is shown in figure 14 in which contours of radial (middle row) and axial (bottom 
row) vorticity are shown in a meridional plane. The shed vorticity originates from 
the inner of the three layers of the second radial mode and its waviness is shifted 
by 8 = n/5 relative to the waviness of the ring core, i.e. where the inner core has 
positive axial vorticity it is enveloped in the outer core by negative axial vorticity 
which extends into the wake forming one leg of a 'hairpin' vortex and similarly with 
the signs reversed. This may be the first step of the process, observed through dye 
visualization, in which rings having become turbulent following the wavy instability 
eject hairpin shaped dye filaments at regular intervals (Schneider 1980; Auerbach 
1991). The recent measurements of Weigand & Gharib (1994) indicate that the 
ejected fluid is indeed vortical. 

Because Maxworthy (1977, p. 482) has experimentally observed a non-rotating 
wave at roughly 4.5" initially and notes that it only begins to rotate at large amplitude 
just prior to the creation of turbulence, the 'angle of the instability wave' as deduced 
in an experiment is of particular interest. It should be noted that the linear eigenmode 
increases in amplitude with a fixed form but in experiments it is the core displacement 
which is being visualized, hence the use of the quotes above. This angle is obtained 
in figure 15 by superimposing contours of total azimuthal vorticity at the meridional 
sections of maximum and minimum radial displacement of the core (solid and dotted 
lines respectively). The angle of the line joining the peak of the solid contours to 
the peak of the dotted contours gradually increases from zero to about -42" relative 
to the direction of propagation; the sign is consistent with the direction of positive 
strain. Owing to loss of resolution soon after the last instant shown, we are unable to 
enter the period in which rotation might be occurring. 

The mean flow changes considerably from its initial form. Figure 15(c) shows the 
azimuthal mean of the azimuthal vorticity at the last instant (other mean vorticity 
components are O(10-6)). It has two concentrations at the angle of waviness previ- 
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FIWJRE 16. Vorticity field for the large-perturbation run (Case 16): - , azimuthal vorticity 

(contour increment = 0.05). 
(contour increment = 0.1); ........ , ---- , positive and negative axial vorticity, respectively 

ously obtained. If the wave were to begin rotating, an unsteady mean vorticity with 
a long-range Biot-Savart induced velocity would develop leading to stretching and 
folding of the shed vorticity. This might be next step in the transition process. 

4.4. Large perturbation case (c = 0.02) 
Here we brifely consider the case of a large initial perturbation which can be thought 
of as having arisen from other instability mechanisms active during ring formation 
or after nonlinear saturation. To eliminate effects of axisymmetric tail shedding the 
equilibrated initial condition is used. 

Figure 16 shows that a higher radial mode with five radial layers is excited after one 
eddy turnover period (t  = 10). In each layer the axial vorticity is phase shifted n/n  
relative to the adjacent layer. At t = 20 the fourth layer (counting from large to small 
r )  has almost dissipated. Note the difference in the structure of the wake compared 
with the small-perturbation case (figure 14). This wake structure is reminiscent of 
the dye visualization photographs of Glezer (1988, figure 9) of a turbulent vortex 



Three-dimensional vortex ring instabilities 373 

ring being formed at a generator and also of the descriptions of Auerbach (1991) 
of a turbulent vortex ring in which periodic ejections of hairpin vortices into the 
wake were observed. In early experimentation with different forms of the initial 
perturbation even more layers with greater persistence were observed (e.g. 7 layers 
at t = 40). Examination of modal energies indicates that the harmonic n = 10 is 
nonlinearly amplified from the outset but the fundamental has a linear growth with 
a smaller growth rate than the small-perturbation case. 

Finally, we would like to mention Cases 17 and 18 in which both grid and time 
step were refined a little and energy histories were plotted for the n = 5 and n = 10 
modes with identical results. 

5 .  Closing remarks 
With respect to the three goals set in the introduction the present work has merely 

addressed the linear and early nonlinear phases of the instability and finds the 
following. 

(i) The existence of linearly unstable bands and their modal structure is in general 
agreement with the inviscid heuristic picture of Widnall, Bliss & Tsai (1974). 

(ii) There is a viscous correction factor to the inviscid growth rate which is well 
described by l--al/Res even up to the point of damping. The Reynolds number, Res, 
defined by Saffman (1978) and based on strain rate due to curvature is appropriate 
because it makes -a1 insensitive to the core size (a1 NN 20 for the second radial 
mode). These results are consistent with the behaviour of the elliptic streamline flow 
(Landman & Saffman 1987). 

(iii) In the nonlinear stage there is (a) amplification of mean swirl and the m = 1 
wave which arises from the interaction of neighbouring second-mode waves; ( b )  a 
modified mean azimuthal vorticity with a double peak; (c) elongation of the inner 
layer of the most linearly unstable mode towards the rear of the ring. 

We look forward to investigating the later stages of transition. Maxworthy’s (1977) 
observations lead one to expect that the instability wave will begin to rotate and 
that the nonlinearly growing mean swirl and n = 1 modes will develop into a rapidly 
propagating bulge wave. The observations of Schneider (1980)’ Auerbach (1991) and 
Weigand & Gharib (1994) lead one to expect that a periodic ejection of hairpin 
vortices into the wake will take place. 

In contrast to Maxworthy’s observations of the growth and breaking of instability 
waves, Sturtevant’s (1981) schlieren observations of high Reynolds number thin rings 
generatcd in a shock tube showed that the waves decay and vanish without breaking! 
He attributed this difference to the visualization technique used, in particular to the 
fact that the schlieren technique provides a better inslantaneous picture of the vortex 
core than dye whose pattern is influenced by the history of the motion. His explanation 
for the phenomenon is that at later times the vorticity becomes redistributed to create 
a stable ring. 

He observed that for shorter lengths of the driver section of the shock tube (hence 
thinner rings) the waves decayed faster as a function of propagation distance. Indeed 
for the shortest driver the instability failed to appear. The trend with core thickness 
suggests viscous damping but an estimate shows that the experimental Res 45, 
which makes this explanation unlikely. (The estimate is made by obtaining al / R  from 
the number of observed waves, which gives Res/ReD. The range of Reo is obtained 
from the range of drift velocities reported by Sturtevant.) 
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